D_{5} and D_{6}
Let's see why D_{n} should have $2 n$ elements by analysing the cases for $D_{5}(\operatorname{Odd} n)$ and $D_{6}($ even $n)$.

First of all, mote that

$$
D_{n}=\{\text { symmetries of } n-g o n\}
$$

so, e.g., elements of D_{4} are the symmetries of the square, and not the square itself and hence the elements are different.
D_{5} This is the group of a symmetries of a regular pentagon and we want to see that why should it have 10 elements.
Note that the angle made at the centre of a regular pentagon is 72°.

So, we can rotate the pentagon 5 times, as $\frac{360^{\circ}}{72^{\circ}}=5$, so after rotating 5 times, weill get back to identity.

One more rotation by 72° will give us the same result as R_{0}. So we got 5 elements of D_{5}, $R_{0}, R_{72}, R_{144}, R_{216}$ and R_{288}.

Let's see how to get the remaining elements by flipping.

We can flip about this axis which
 starts from A and ends at the midpoint of the edge opposite to A which is DC.

The result will be

i.e., apart from A, all vertices got flipped.

But, there are total 5 vertices, A, B, C, D, E.
So we can do the same thing with any of them, i.e, flip about an axis which starts from one of the vertex and ends at the midpoint of the edge of the opposite edge. So we get

$\xrightarrow[\substack{\text { the dotted } \\ \text { axis }}]{\text { flip about }}$

So we get the remaining 5 elements and hence a total of 10 elements.
The general situation of D_{n}, n odd is similar.

D6 Now let's see D_{6}, which is the group of symmetries of a regular hexagon. It has 12 elements. Let's see why. The angle made at the centre of a regular hexagon is 60°.

So, we can rotate $\frac{360^{\circ}}{60^{\circ}}=6$ times, which will give the 6 elements $R_{0}, R_{60}, R_{120}, R_{180}, R_{240}$ and R_{300}.

$$
\xrightarrow{R_{300}}
$$

One more rotation of 60° will give the same result as Ru. Now, we'll see the flippings. We con draw an axis joining the vertices A and
D and flip about that.

But we can do the same thing with any pair of opposite vertices. So we get

$$
\longrightarrow
$$

So we get 3 more elements in D_{6} and so we have 9 elements so far. Now, we can draw an axis from the middle of edge $A B$ to middle of edge $E D$ and then flip about that

D

But we can do the same thing with any pair of opposite edges. So we get

D

D

C

A

So we got all the 12 elements in D_{6}.
The situation in D_{n}, never is the same.
Hence D_{n} has $2 n$ elements and we com expli-- city describe them too.

Also note that we can call all the above flipping a symmetry because our polygon is regular.
\qquad
\qquad 0

